Skip to main content
Neuromechanics of Mobility Lab

Paper Accepted (May 2019)

New publication with our collaborators at Emory University:

Allen JL, Kesar TM, Ting LH (2019). Motor module generalization across balance and walking is impaired after stroke. Journal of Neurophysiology. doi:10.1152/jn.00561.2018

Abstract: Muscle coordination is often impaired after stroke, leading to deficits in the control of walking and balance. In this study, we examined features of muscle coordination associated with reduced walking performance in chronic stroke survivors using motor module (a.k.a. muscle synergy) analysis. We identified differences between stroke survivors and age-similar neurotypical controls in the modular control of both overground walking and standing reactive balance. In contrast to previous studies that demonstrated reduced motor module number poststroke, our cohort of stroke survivors did not exhibit a reduction in motor module number compared with controls during either walking or reactive balance. Instead, the pool of motor modules common to walking and reactive balance was smaller, suggesting reduced generalizability of motor module function across behaviors. The motor modules common to walking and reactive balance tended to be less variable and more distinct, suggesting more reliable output compared with motor modules specific to either behavior. Greater motor module generalization in stroke survivors was associated with faster walking speed, more normal step length asymmetry, and narrower step widths. Our work is the first to show that motor module generalization across walking and balance may help to distinguish important and clinically relevant differences in walking performance across stroke survivors that would have been overlooked by examining only a single behavior. Finally, because similar relationships between motor module generalization and walking performance have been demonstrated in healthy young adults and individuals with Parkinson’s disease, this suggests that motor module generalization across walking and balance may be important for well-coordinated walking.